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A quantum magnetic analogue to the critical 
point of water

J. Larrea Jiménez1,2, S. P. G. Crone3,4, E. Fogh2, M. E. Zayed5, R. Lortz6, E. Pomjakushina7, 
K. Conder7, A. M. Läuchli8, L. Weber9, S. Wessel9, A. Honecker10, B. Normand2,11, 
Ch. Rüegg2,11,12,13, P. Corboz3,4, H. M. Rønnow2 ✉ & F. Mila2

At the liquid–gas phase transition in water, the density has a discontinuity at 
atmospheric pressure; however, the line of these first-order transitions defined by 
increasing the applied pressure terminates at the critical point1, a concept ubiquitous 
in statistical thermodynamics2. In correlated quantum materials, it was predicted3 
and then confirmed experimentally4,5 that a critical point terminates the line of Mott 
metal–insulator transitions, which are also first-order with a discontinuous charge 
carrier density. In quantum spin systems, continuous quantum phase transitions6 
have been controlled by pressure7,8, applied magnetic field9,10 and disorder11, but 
discontinuous quantum phase transitions have received less attention. The 
geometrically frustrated quantum antiferromagnet SrCu2(BO3)2 constitutes a 
near-exact realization of the paradigmatic Shastry–Sutherland model12–14 and displays 
exotic phenomena including magnetization plateaus15, low-lying bound-state 
excitations16, anomalous thermodynamics17 and discontinuous quantum phase 
transitions18,19. Here we control both the pressure and the magnetic field applied to 
SrCu2(BO3)2 to provide evidence of critical-point physics in a pure spin system. We use 
high-precision specific-heat measurements to demonstrate that, as in water, the 
pressure–temperature phase diagram has a first-order transition line that separates 
phases with different local magnetic energy densities, and that terminates at an Ising 
critical point. We provide a quantitative explanation of our data using recently 
developed finite-temperature tensor-network methods17,20–22. These results further 
our understanding of first-order quantum phase transitions in quantum magnetism, 
with potential applications in materials where anisotropic spin interactions produce 
the topological properties23,24 that are useful for spintronic applications.

In the pressure–temperature (P, T) phase diagram of water (Fig. 1a)25,26, 
the line of first-order transitions terminates at Pc = 221 bar and Tc = 374 °C, 
defining the critical point where liquid and vapour become a single 
phase1. Although the first-order line has no critical scaling proper-
ties, its termination point does2. In the supercritical regime, around 
and above the critical point, there is no transition and indeed one may 
proceed continuously from liquid to vapour without ever undergoing 
one. Because their difference is defined not by a change in symmetry 
but by a scalar, the particle density, which can take two values at the 
discontinuity, the critical point is in the Ising universality class.

Quantum systems with only spin degrees of freedom enable theorists 
to realize entangled quantum many-body models, including those 
with exact solutions or ground states, and experimentalists to probe 
their properties on truly macroscopic lengthscales. An example of a 

two-dimensional (2D) quantum spin system that hosts a first-order 
quantum phase transition (QPT) between two exactly known ground 
states is provided by the S = 1/2 Heisenberg model in a fully frustrated 
bilayer geometry. In that system, it was shown theoretically27 that the 
line of first-order transitions extending to finite temperatures is again 
terminated by an Ising critical point, as we summarize in the Methods 
section.

A quantum magnetic material with a related geometry, SrCu2(BO3)2 
(ref. 28), has drawn intensive interest because of the extreme frustra-
tion of its orthogonal-dimer structure (Fig. 1b, inset). This realizes 
a S = 1/2 Heisenberg model formulated by Shastry and Sutherland12 
because of its exact ground state, a product of dimer singlets, at all small 
and intermediate values of the inter- to intra-dimer interaction ratios 
(J/JD < 0.675)14. Although the frustration is manifest in many unusual 
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phenomena15–17, our interest in the Shastry–Sutherland model lies 
first in the presence of two first-order QPTs, from the dimer phase to 
a plaquette phase at J/JD = 0.675(2) and thence to an ordered Néel anti-
ferromagnet at J/JD = 0.765(15)14, and second in the fact that applying a 
hydrostatic pressure to SrCu2(BO3)2 acts to control J/JD, revealing both 
transitions at respective pressures of approximately 19 kbar (ref. 18)  
and 27 kbar (ref. 19).

To investigate the possibility of a critical point in SrCu2(BO3)2, we 
perform high-precision measurements of the specific heat using 
an a.c. calorimetry technique29. Large single crystals of SrCu2(BO3)2 
were grown by a floating-zone method (Methods). Samples of masses 
up to 36 mg were cut, patterned with metallic strips for calorimetry 
and mounted in a clamp cell allowing hydrostatic pressures up to 
26.5 kbar and in applied magnetic fields up to 9 T. Details of our a.c. 
measurement procedures are provided in Methods and Extended Data  
Fig. 1.

Results: zero field
Starting at zero magnetic field, the pressure-induced evolution of 
the specific heat, shown as C(T)/T, is illustrated in Fig. 1b. As quan-
tified in Fig. 2a, C(T)/T at low pressures shows an exponential rise 
to a broad maximum at a temperature, Tmax, that tracks the gap to 
the triplon or bound-triplon excitations of the dimer phase17. With 
increasing P, this peak moves gradually lower and becomes pro-
portionately narrower, but between 18 and 20  kbar it becomes 
extremely tall and narrow (Figs. 1b, 2a), bearing all the character-
istics of a critical point. After reaching a lowest measured value of 
3.4 K at P = 20 kbar, Tmax rises with increasing pressure and the peak 
broadens again (Fig. 2b), indicating that the singular behaviour has 
terminated. A second small peak appears around 2 K for P ≥ 18 kbar 
(Figs. 1b, 2a, b) and persists to our upper pressure limit. We expect that 
this feature marks the thermal transition out of the plaquette phase 
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Fig. 1 | Specific heat of water and of SrCu2(BO3)2, shown together with 
calculated critical properties of the Shastry–Sutherland model. a, Specific 
heat of water, C(P, T), shown as a function of pressure and temperature. The 
black line marks the first-order phase boundary separating liquid (lower left) 
from vapour (upper left) and the black star marks the critical point.  
b, Experimental data for the specific heat, C(P, T)/T, of SrCu2(BO3)2. Below 
18 kbar is the dimer product phase and above 20 kbar is the plaquette phase. 
The two lines of maxima meet at the critical point at approximately 19 kbar and 
3.3 K. The inset shows the orthogonal-dimer geometry of the Shastry–
Sutherland model, which is realized by the Cu2+ ions (S = 1/2) in SrCu2(BO3)2.  
c, Specific heat obtained by iPEPS calculations with D = 20 performed for the 
Shastry–Sutherland model with different values of the coupling ratio, J/JD, 

which in SrCu2(BO3)2 was shown to be an approximately linear function of the 
applied pressure18. d, Correlation length, ξ, obtained by iPEPS with D = 20 and 
expressed in units of the lattice constant, a. ξ becomes large only at the 
finite-temperature critical point; the dashed black line shows the locus of 
maxima of ξ( J/JD) at each fixed temperature, and terminates when ξ/a < 1. We 
note that the colour scales in c and d are truncated such that they do not include 
the peak values of C/T and ξ. e, Dimer spin–spin correlation function, ⟨Si · Sj⟩, 
showing a discontinuity with J/JD at low temperatures but continuous 
behaviour throughout the supercritical regime. The dashed black line, the 
equivalent of the critical isochore in water, shows the locus of points where this 
order parameter is constant at its critical-point value, ⟨Si · Sj⟩ = −0.372(30).
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and remark that it seems to remain well below the 3.4 K peak at all  
pressures.

To model these thermodynamic results we use the method of infi-
nite projected entangled pair states (iPEPS), which is a variational 
tensor-network ansatz for the representation of a quantum state on 
an infinite lattice20,21. The accuracy of the ansatz is controlled by the 
bond dimension, D, of the tensors (Methods). Whereas iPEPS has been 
applied previously to discuss the ground state of the Shastry–Suther-
land model14,15,30, here we apply recently developed methods17,22 for 
representing the thermal states of the system. We analyse the pure 
Shastry–Sutherland model, by which is meant a single 2D layer (Fig. 1b, 
inset); SrCu2(BO3)2 is known to have weak and frustrated interlayer 
interactions (at most 10% of JD), Dzyaloshinskii–Moriya interactions 
(3%)31 and higher-order further-neighbour interactions, none of which 
affect the first-order nature of the dimer–plaquette transition.

iPEPS results for C(T)/T as a function of J/JD, presented in Fig. 1c, show 
the same evolution as in SrCu2(BO3)2 under pressure. The broad peaks 
of the gapped dimer and plaquette states move to lower temperatures 
on approaching the QPT and narrow to a tall, sharp spike at a critical 
coupling ratio (Fig. 2c, d). Figure 1d shows that the correlation length 
grows dramatically around this critical point, as Extended Data Fig. 2 
also makes clear, but remains small at temperatures below it. Figure 1e 
illustrates how the average dimer spin–spin correlation, a scalar that 
serves as an order parameter for the nature of the spin state, has one 
discontinuous jump at all temperatures T < Tc, defining a clear line of 
first-order transitions, but changes to a smooth function of J/JD at T ≥ Tc, 
in direct analogy to the density of water molecules.

Our iPEPS results computed with D = 10, 14 and 20 show the same 
qualitative forms and provide good quantitative convergence (Fig. 2e, f)  
towards the critical coupling ratio of zero-temperature iPEPS14. From 

this we estimate the critical temperature kBTc = 0.039(6)JD (kB, Boltz-
mann constant). We work in units of JD because the exact P dependence 
of the magnetic interactions in SrCu2(BO3)2 is subject to further uncer-
tainty; taking a linear extrapolation at constant J, with errors provided 
by alternative estimates18, a value JD(Pc)/kB = 77(8) K gives a best estimate 
of Tc = 3.0(6) K, in excellent agreement with experiment. By analysing 
the critical scaling of the discontinuity for D = 20, we deduce (Fig. 2g) 
that the exponent is fully consistent with the value β = 1/8 expected of 
a 2D Ising transition.

Turning to the line of thermal transitions appearing below the criti-
cal point in SrCu2(BO3)2 (Fig. 1b), iPEPS calculations near the critical 
coupling become increasingly challenging at low temperatures (Meth-
ods). Although working with a finite Dzyaloshinskii–Moriya interaction 
allows access to lower temperatures on both sides of the discontinuity 
simultaneously, as we show in Extended Data Fig. 3, we are not currently 
able to obtain quantitatively reliable information about the thermal 
transitions of the plaquette phase.

Nevertheless, by combining our experimental and numerical results 
we now have enough information to answer the key question about the 
connection between the lines of thermal and first-order transitions. 
There are a priori two scenarios. (i) The first-order line terminates at an 
isolated critical point at T = Tc and the thermal line ends when it meets 
the first-order line at an intermediate temperature, T < Tc, forming a 
separate ‘critical endpoint’. (Note that, in statistical mechanics termi-
nology32,33, the termination of a line of first-order transitions is a ‘critical 
point’ and the term ‘critical endpoint’ is reserved for the termination of 
a line of continuous phase transitions27.) (ii) The first-order line trans-
forms into the (second-order) thermal line at a tricritical point. From 
experiment, the thermal line remains at a near-constant temperature 
close to 2 K and well below Tc (Figs. 1b, 2a, b). Numerically, we have 
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Fig. 2 | Specific heat and critical scaling at zero magnetic field. a, b, C(T)/T 
measured for applied pressures from 0 to 18.2 kbar (a) and from 20 to 
26.5 kbar (b). The temperature of the broad peak that is observed at most 
pressures (P ≤ 15 kbar and P ≥ 22 kbar) drops to a finite minimum value at the 
QPT, where C(T)/T displays only a tall and extremely narrow peak. c, d, Specific 
heat obtained by D = 20 iPEPS calculations performed for the Shastry–
Sutherland model in the dimer (c) and plaquette (d) phases using 
plaquette-based tensors (Methods). The evolution of peak heights with 
proximity to the critical coupling ratio, illustrated clearly in the numerical data, 
is less apparent in experiment. We note that the phonon contribution 
(C(T)/T ∝ T2) to the measured specific heat becomes appreciable at higher 

temperatures; although this can be subtracted for accurate fitting17, our focus 
here is on the peak positions at and below 6 K. e, Convergence of the critical 
coupling ratio obtained in finite-temperature iPEPS calculations as a function 
of 1/D (solid circles); the extrapolated value of 0.67(1) (open square) agrees well 
with the zero-temperature value14. f, Convergence of the critical temperature 
as a function of 1/D (solid circles), leading to the estimate kBTc/JD = 0.039(6) 
(open square). The error bars on the extrapolated values (open squares) are 
conservative estimates based on their separation from the last calculated 
point. g, Critical exponent, β = 0.123(15), of the discontinuity, Δ⟨Si · Sj⟩, in the 
dimer spin–spin correlation function at the first-order transition line, 
demonstrating consistency with the 2D Ising exponent, β = 1/8.
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identified an isolated critical point (Fig. 1e), with the Ising exponent 
β = 1/8 (Fig. 2g), in the Shastry–Sutherland model. Thus our results 
confirm scenario (i) and we place the critical point of SrCu2(BO3)2 at 
Pc ≈ 19 kbar and Tc ≈ 3.3 K.

Results in a magnetic field
To challenge our interpretation, we consider the situation in a finite 
magnetic field. Because the field has little effect on the gapped dimer 
and plaquette phases, the physics of the critical point should be essen-
tially unaffected. We have measured the specific heat in fields up to 
μ0H = 9 T (μ0, vacuum permeability; H, magnetic field strength), and 
indeed we observe near the critical point (18.2 kbar, Fig. 3a) that the 
peak remains sharp and shows only minor field-induced changes. These 
features are reproduced in detail by our iPEPS results, shown in Fig. 3d 
for a J/JD value very close to the D = 14 QPT; the results also indicate that 
the small changes can result simply from not pinpointing the exact 
critical coupling.

Turning to the peak around 2 K, our 18.2-kbar and 22.8-kbar data 
(Fig. 3a, b) show that the field suppresses both its height and position. 
However, above 5.5 T for 22.8 kbar, another peak has emerged that is 
very different in shape, becoming tall, sharp and isolated from the broad 

4-K hump, which has almost vanished above 4 T in our 26.5-kbar data 
(Fig. 3c). In Fig. 3e we collect all of these peaks to obtain a clear picture 
of three key phenomena. First, the 4-K features remain isolated, chang-
ing from sharp to broad with increasing P and H in a manner mostly 
independent of the complex action below 2.5 K. Second, the thermal 
transition of the plaquette phase is suppressed to zero temperature by 
fields of 6 T at 18.2 and 20.0 kbar; this field value is consistent with a 
closing of the gap to the triplet plaquette excitation observed in previ-
ous work18. Third, this suppression is replaced at our higher pressures 
and fields by the emergence at finite temperatures of the new, sharp 
peak, which from its field-induced evolution we attribute to the order-
ing transition of the antiferromagnetic phase.

We note that zero-field C(T) data similar to ours have appeared 
recently19. These authors did observe the tall, sharp critical-point 
peak in their data at 19 and 21 kbar (1.9 and 2.1 GPa, shown only in their 
supplemental materials), but provided no explanation. They also 
observed the 2-K peak and ascribed it to a plaquette state (which they 
assume to be the ‘empty’ plaquette phase, see below), the deduced 
gap of which is also consistent with the 6-T critical field we observe. 
At pressures just beyond the limits of our study, they also argued that 
the pressure-induced development of the 2-K feature is a signature of 
the antiferromagnetic phase, and hence our observation of strong, 
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a, C(T)/T at 18.2 kbar for four different applied fields up to μ0H = 9 T. The peak 
due to the critical point retains its sharp nature and moves only slightly 
downwards in position and height with increasing field. b, C(T)/T at 22.8 kbar 
for multiple different applied fields, showing initial field-induced suppression 
of the low-temperature transition followed by a dramatic change in shape to a 
sharp low-T peak with only a minimal hump at higher energies. c, C(T)/T at 
26.5 kbar, illustrating the field-induced emergence of the new, sharp peak at 
9 T, the shape and size of which are suggestive of the transition to the 
antiferromagnetic phase. d, C(T)/T computed by iPEPS at J/JD = 0.686, close to 
the critical point for D = 14, for a range of applied magnetic fields. As in a, the 
sharp peak due to the critical point undergoes only a minor field-induced 
suppression of its position and height, and its width is unaltered. For the 

g factor of SrCu2(BO3)2, a field h/JD ≡ gμBμ0H/JD = 0.2 (μB, Bohr magneton) 
corresponds to approximately 11 T. e, Characteristic field and temperature 
scales revealed by our full set of specific-heat measurements, which separate 
into high-T features (open symbols) around 4 K and low-T features (solid 
symbols) around and below 2 K. The high-T feature is the broad maximum, 
which at the critical point evolves into the sharp peak. The low-T feature at the 
lower pressures is the small peak due to the thermal Ising transition out of the 
plaquette phase, which can be suppressed to T = 0 by the applied field. At the 
higher pressures this feature changes into the strong peaks arising from the 
thermal transition of the antiferromagnetic phase, which is favoured by the 
applied field. Error bars represent uncertainties in the centres of particularly 
broad or anomalously shaped peaks.
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sharp features in an applied field (Fig. 3b, c) helps to confirm their 
identification.

Phase diagram
In Fig. 4 we gather all the features abstracted from our specific-heat data 
as a function of both the applied magnetic field and the pressure. The 
(P, T) plane shows the critical point (red star) lying well above the line of 
thermal Ising transitions. On the scale of the figure, the first-order line 
is essentially vertical in temperature27. Although a structural transition 
is probably associated with the magnetic transition in SrCu2(BO3)2, 
causing a discontinuity in the coupling constants, we stress that there 
is only one transition as a function of J/JD (Fig. 1). This picture of the 
critical point at H = 0 is reinforced by the data at finite fields, which 
indicate a line of critical points, and a wall of first-order transitions, that 
dominate the (P, H, T) phase diagram. Below Tc(P, H), this wall defines a 
plane through which the average dimer spin–spin correlation should 
change discontinuously, a prediction that may be tested by measur-
ing the P dependence of the instantaneous spin correlation function 
by neutron scattering, or of phonon modes sensitive to the magnetic 
correlations34.

At temperatures below the critical point in Fig. 4, our data reveal a 
wealth of quantum and thermal phase transitions. The field suppresses 
the continuous thermal transitions out of the plaquette phase and in its 
place we have found the antiferromagnetic phase at pressures as low 
as 22.8 kbar. The pressure-induced plaquette–antiferromagnetic QPT 
was thought to be weakly first-order14, but has recently been proposed 
as a candidate deconfined quantum critical point35. Although our data 
suggest that the field-induced plaquette–antiferromagnetic QPT could 
change from first to second order between different regimes, there is 
no clear sign of another finite-temperature critical point. Establishing 
the universality classes of these transitions remains a challenge that is 
driving progress both in specific-heat measurements under extreme 
(P, H, T) conditions and in numerical methods for computing the ther-
mal properties of frustrated systems.

Although our iPEPS studies of the Shastry–Sutherland model give a 
quantitative account of the critical-point physics of SrCu2(BO3)2, they 
differ from experimental data on the nature of the plaquette-ordered 
phase. NMR36 and neutron scattering experiments18 indicate that in the 
plaquette phase of SrCu2(BO3)2 the singlets form on the ‘full’ plaquettes 
of the J lattice (those with a JD bond in the inset of Fig. 1b), whereas the 
Shastry–Sutherland model favours singlets on the ‘empty’ plaquettes. 
From the sensitive energetic competition between the empty-plaquette 
and full-plaquette phases30, it is not surprising that the additional 
three-dimensional and Dzyaloshinskii–Moriya terms in SrCu2(BO3)2 
could cause this discrepancy, and we expect the state we observe above 
18 kbar and below 2 K to be the full-plaquette phase. Because both 
plaquette phases have twofold degenerate ground states (only half 
of the plaquettes may form singlets), the thermal transition has Ising 
symmetry independent of their empty-plaquette or full-plaquette 
nature, and our results are not affected by this issue.

The physics of the critical-point phase diagram is different from 
that of second-order QPTs: because one may pass from one side of 
the discontinuity to the other without crossing a transition, there is 
no breaking of symmetry. At the critical point itself, the property of a 
divergent correlation length (Fig. 1d, Extended Data Fig. 2), associated 
with domain sizes and having critical exponents set by the universality 
class, remains. The supercritical regime has recently become a subject 
of active investigation, including (with a view to sensitive switching) 
in critical fluids37. In the Mott metal–insulator phase diagram, and its 
realization in the Hubbard model38, theory39,40 and experiment41 have 
suggested the emergence of quantum critical scaling in this regime. 
In SrCu2(BO3)2, the striking feature of the phase diagram is that the 
temperature, Tmax, characterizing the peak in C/T reaches a minimum 
at Tc. We show in Extended Data Fig. 4 that this behaviour is universal 
around an Ising critical point in 2D lattice models. Thus the specific heat 
clearly defines not one but two characteristic lines in the supercritical 
regime (Fig. 1b, c), in contrast to the correlation length (Fig. 1d) and 
the critical isochore (Fig. 1e), both of which are regarded as marking 
a single crossover line.
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Nature  |  Vol 592  |  15 April 2021  |  375

Although this remarkable property of the specific heat is different 
from that in water (Fig. 1a), we stress that it is intrinsic to a system as 
simple as the Ising model. While the origin of this complex critical-point 
physics awaits further theoretical analysis, we observe that its con-
sequences can be probed experimentally in quantum spin systems 
by comparing the specific heat with scattering measurements of the 
order parameter. As modern quantum magnetism and spintronics 
embrace the highly spin-anisotropic interactions required to produce 
the topological physics of Ising, Kitaev, skyrmion and other systems, 
a full understanding of the resulting first-order QPTs will include the 
quantum phenomenology of the critical point, the classical variant of 
which has been known to science for two centuries.
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Methods

Samples
Single crystals of SrCu2(BO3)2 were grown by a floating-zone method. 
First, polycrystalline SrCu2(BO3)2 was prepared by a solid-state reaction 
using as starting materials SrCO3, CuO and B2O3 with 99.99% purity. 
These were mixed, ground and heat-treated at 900 °C in flowing oxygen 
for over 100 h with several intermediate grindings. The phase purity 
was verified by conventional X-ray diffractometry and the powder 
was pressed hydrostatically into rods (8 mm in diameter and around 
90 mm in length) which were sintered at 900 °C for 20 h in an oxygen 
atmosphere.

Single-crystal growth was carried out using an optical floating zone 
furnace (FZ-T-10000-H-IV-VP-PC, Crystal Systems) with four 300-W 
halogen lamps as the heat source. Although the first reported single 
crystals of SrCu2(BO3)2 were also grown in this type of furnace, using 
LiBO2 discs as a solvent placed on a top of a seed rod42, we obtained 
better results using a self-adjusted flux method43. Optimal growth 
conditions were found to be a steady growth rate of 0.25 mm h−1 at 
all times, rotation of both feeding and seeding rods at approximately 
15 rpm in opposite directions to ensure homogeneity of the liquid and 
the application of a 5-bar pressure of argon with 20% oxygen. When a 
homogeneous melt was achieved, the power of the lamps was decreased 
slowly (over 24 h) until steady-state conditions were found (approxi-
mately 48.5% lamp power in the present case), after which these con-
ditions were maintained rigorously until the end of the growth. The 
full growth process required approximately two weeks and resulted 
in a recrystallized boule 8 cm in length containing a single-crystalline 
grain in its top 4 cm.

Specific-heat measurements
Three slabs were cut from the single-crystal rod, each with a 
cross-section of 7.6–9.0  mm2 in the ab plane and a thickness of  
0.5–1.0 mm parallel to the c axis. The sample masses were measured to 
be between 15 and 36 mg. The samples were polished gently to deposit 
Pt films of 20-nm thickness. To measure the heat capacity, C(P, H, T), 
under multiple extreme conditions (very low temperatures, high 
pressures and intense magnetic fields), we used a.c. calorimetry at 
a second-harmonic mode (2ω). We employed a piston cylinder BeCu 
clamp cell to apply pressures up to 26.5 kbar, with liquid kerosene as 
the pressure-transmitting medium. Measurements of the electrical 
resistivity at the superconducting transition of a Pb strip were used 
as a pressure manometer and revealed good hydrostatic conditions 
in our experiments. The pressure cell was inserted into a cryostat with 
a 3He–4He dilution refrigerator that enabled both cell and sample to 
be cooled to 0.1 K with temperature variations below 1 mK. At some 
pressure steps, a magnetic field up to 9 T was applied using a supercon-
ducting magnet the field direction of which was parallel to the c axis.

Our a.c. calorimetry set-up was sputtered onto the sample slab to 
guarantee good thermal contact of the sample, heater and thermom-
eter29. It consisted of two separate Pt films, one used as the heater and 
the other used to improve the thermal contact between sample and 
thermometer, as shown in Extended Data Fig. 1a. This configuration 
enabled the efficient measurement of the modulated temperature 
difference in the sample (ΔTac) as a function of the amplitude and fre-
quency, f = ω/(2π), of the alternating excitation current, Iex = I0e−iωt. The 
heating power was applied through two Constantan wires (H1a and H1b 
in Extended Data Fig. 1a), this choice of metal being made to avoid heat 
leakage through the wires; the gold wires (H2a and H2b) were applied to 
measure the electrical resistance of the heater as a function of P, H and 
T. We used a AuFe(0.07)/Chromel thermocouple (TC2 in Extended Data 
Fig. 1a) as the thermometer detecting the temperature differential, 
ΔTac, between the sample and its environment, and placed a second 
thermocouple (TC1) symmetrically opposite to it; because TC1 showed 
the same f dependence of ΔTac as did TC2, we could conclude that there 

were no thermal gradients across the sample within the resolution of 
our experiment.

The sample heat capacity was obtained directly from the isothermal 
f scans, shown in Extended Data Fig. 1b, c, by fitting with the standard 
steady-state equation44. Given the complete control of all relevant a.c. 
calorimetry parameters, our method has a number of advantages in 
the determination of absolute values of C(P, H, T) when compared with 
previous work19. These advantages include a more precise determina-
tion of the corrections for unwanted heat losses throughout the sample, 
a more precise separation of additional P-dependent contributions and 
the ability to achieve an optimal thermal equilibrium inside the sample 
(within the resolution of the thermocouple). Thus, our ‘f-scan’ analy-
sis29 allows an accurate determination of the working frequency (fC) at 
which to maximize C(P, H, T) at each pressure. Extended Data Fig. 1c, d 
demonstrates the correct determination of fC = 1.5 Hz at P = 18.2 kbar, 
whose measurement at fixed fC (a ‘T scan’) reproduces the same result 
as obtained from our f-scan analysis29.

For practical purposes in our measurements of SrCu3(BO2), we 
found that the range of pressures and fields covered by our current 
investigation had negligible influence on the relevant parameters in 
the steady-state equation. Thus we measured the T dependence of 
the heat capacity of each sample at a constant field and at a fixed fre-
quency, fC, determined for each pressure. Our methodology allowed 
us to determine the heat capacity within an accuracy of 5% with respect 
to an adiabatic technique. Further details concerning all aspects of 
the procedures of our a.c. calorimetry measurements may be found 
in previous work29.

Fully frustrated bilayer
The Heisenberg model on the fully frustrated bilayer27 presents a clear, 
and thus conceptually valuable, example of a first-order QPT giving rise 
to a critical point at finite temperature. In this geometry, which has no 
known materials analogue, spin pairs (with coupling  J⊥) are arranged 
vertically on a square lattice with equal couplings ( J∥) to both spins 
of all four dimer neighbours, and the ground state jumps discontinu-
ously from exact dimer singlets to exact triplets at  J⊥/J∥ = 2.315. With 
increasing temperature, the discontinuity in triplet density reduces 
until the line of first-order transitions terminates at a critical point, in 
the 2D Ising universality class, when kBTc ≈ 0.52J∥ (ref. 27). The geometry 
of the fully frustrated bilayer has a direct connection to that of the 
Shastry–Sutherland model45, suggesting that the two may share similar 
critical-point physics. A discontinuity in the average dimer spin–spin 
correlation is certainly well documented at the dimer–plaquette QPT 
in the Shastry–Sutherland model. However, the models do differ in 
that the total spin of each dimer is a good quantum number in the fully 
frustrated bilayer, but not in the Shastry–Sutherland case. A further 
point of contrast is that the QPT of the fully frustrated bilayer is from 
the dimer-singlet phase to a 2D antiferromagnetic phase, which by the 
Mermin–Wagner theorem has no finite-temperature transition, forcing 
the critical point associated with the discontinuity to be observed as 
an isolated point. The fact that the plaquette phase of the Shastry–
Sutherland model has a thermal Ising transition raises in principle the 
alternative scenario of the tricritical point, which we show is excluded 
by our experimental and numerical results.

iPEPS
Tensor-network methods provide a powerful approach for accurate 
numerical calculations of both the ground and thermal states of gapped 
local Hamiltonians. iPEPS20,21,46, a 2D generalization of matrix-product 
states, are a variational ansatz enabling both wavefunctions and ther-
mal states22,47–50 to be represented efficiently in the thermodynamic 
limit, with the accuracy of the representation controlled systematically 
by the bond dimension, D, of the tensors.

To obtain an iPEPS representation of a thermal state, we employ the 
algorithms used previously22, which are based on the imaginary-time 



evolution of a purification of the thermal density operator. At each time 
step the bond dimension of the iPEPS is truncated to the maximal D. 
To maximize D while working near the QPT, we restrict the truncation 
to the (local) simple-update approach17,51. To improve the efficiency of 
the calculations, we exploit the global U(1) symmetry of the model52,53, 
which for a pure Heisenberg model is preserved in the presence of an 
applied field at finite temperatures. Physical expectation values are 
computed by contracting the tensor network, which we perform by a 
development54 of the corner-transfer-matrix method55,56.

This method is also used to compute the transfer matrix, from which 
we extract the correlation length, ξ in Fig. 1d and Extended Data Fig. 3b, 
of the correlation function with the slowest decay. iPEPS with a suf-
ficiently large but finite D can be used to represent a critical state at 
finite temperature, as in the early example of the 2D Ising model55. In 
the Shastry–Sutherland model we have found that D = 8 is already large 
enough to obtain a diverging ξ on approaching the critical point, as we 
show in Extended Data Fig. 2; we remark that the region of parameter 
space over which the divergence is visible is considerably narrower 
than the point spacing of 0.001 shown in Fig. 1 and Extended Data Fig. 3.

In the Shastry–Sutherland problem, the optimal tensor geometry 
depends on the ground state14: the spin correlations of the dimer 
phase are represented most efficiently using one tensor per dimer in 
a two-dimer unit cell17, whereas correlations in the plaquette phase are 
best described by an ansatz with one tensor per four sites (from four 
different dimers) on a plaquette14. For working around a critical point, it 
is essential to use a single representation of both quantum phases, and 
in the Shastry–Sutherland model the plaquette basis is more efficient 
for representing the dimer phase than the reverse. For this reason, 
we have used the plaquette basis for all of the results reported here.

As a consequence we do observe numerical instabilities at the lowest 
temperatures when working in the dimer phase (the regions excluded 
from Figs. 1c–e,  2c, d). These are most probably an artefact arising 
because of the product nature of the dimer ground state, as all observa-
bles and energies are essentially converged at those temperatures. One 
means of circumventing this problem is to add a small Dzyaloshin-
skii–Moriya interaction to the model, in fact guided by the real spin 
Hamiltonian of SrCu3(BO2)2. This leads to an entangled ground state, 
which, as shown in Extended Data Fig. 3, makes the low-temperature 
regime accessible, albeit at cost of a reduced D. These results confirm 
further that the Dzyaloshinskii–Moriya interactions of SrCu3(BO2)2 
have no effect on the physics of the critical point.

When working in the plaquette phase, the strongly entangled nature 
of the plaquette ground state makes low-temperature studies very 
challenging, and for this reason our primary focus is on temperatures 
T/JD ≳ 0.03, for a full characterization of the regime relevant to the criti-
cal point. Although a small feature is evident in C/T around T/JD = 0.02 
(Extended Data Fig. 3a), we caution against associating this with the 
Ising transition of the plaquette phase, because we do not find corre-
sponding behaviour in the spin correlations and thus cannot confirm 
the reliability of our results at such low temperatures.
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Extended Data Fig. 1 | a.c. calorimetry on SrCu2(BO3)2. a, The a.c. calorimeter 
was prepared by depositing two Pt thin films (the shinier surfaces) over both 
halves of the sample. One film was used as the heater and the other for optimal 
thermal contact and measurement. The heating current (Iex at frequency f ) was 
supplied through the pair of Constantan wires labelled H1a and H1b, and H2a and 
H2b were used to measure the electrical resistance, RPt, of the Pt film. TC1 and 
TC2 are thermocouples and K represents the thermal contact between the 
sample and the cryostat (through the pressure cell). b, Isothermal (T = 4.5 K) 
and isobaric (P = 20 kbar) f dependence of the modulated pick-up voltage, Vac, 

which is directly proportional to the temperature differential, ΔTac, measured 
by the thermocouples at two different positions. c, Isobaric (P = 18.2 kbar) 
f-dependence measurements of Vac at different temperatures with I0 = 1.6 mA at 
T ≥ 3.9 K, I0 = 0.8 mA at T = 2 K and I0 = 0.4 mA at T < 2 K. d, Sample heat capacity 
normalized to the input heating power (P I R=0 Pt0

2 ), comparing the fit of Vac( f ) 
obtained from the steady-state equation (‘f scan’)29 with values obtained 
directly from a variable-temperature measurement performed at the fixed 
working frequency fC = 1.5 Hz (‘T scan’). Solid and dashed lines in b and c 
represent fits using the steady-state equation29,44.



Extended Data Fig. 2 | Correlation length. ξ/a for the Shastry–Sutherland 
model, calculated by iPEPS with D = 8 as a function of the coupling ratio, J/JD,  
at a fixed temperature Tc(D = 8) = 0.0522JD/kB. The three panels show increasing 
magnification of the  J/JD axis from the equivalent of Fig. 1 (upper right) through 
the step sizes of Fig. 2c, d (10−3J/JD, centre) to 10−5J/JD (lower left).
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Extended Data Fig. 3 | Critical point in the presence of Dzyaloshinskii–
Moriya interactions. Thermodynamic data obtained from iPEPS calculations 
with D = 10 performed for the Shastry–Sutherland model in the presence of 
Dzyaloshinskii–Moriya interactions. These interactions, of strength DD, are 
placed on the dimer ( JD) bonds and have the magnitude known for SrCu2(BO3)2. 
They create an entangled ground state in the dimer phase, which resolves the 
numerical instabilities observed for the pure Shastry–Sutherland model at low 
temperatures, although the reduced symmetry limits the maximum D to 10.  

a, Specific heat, C( J/JD, T)/T, shown in the same format as for Fig. 1b, c.  
b, Correlation length, ξ/a, showing clearly the region of ‘pressure’ and 
temperature over which Ising correlations develop. c, Dimer spin–spin 
correlation function, ⟨Si · Sj⟩, emphasizing the abrupt onset with decreasing 
temperature of a sharp discontinuity as a function of  J/JD. It is clear that these 
Dzyaloshinskii–Moriya interactions have no qualitative effect whatsoever on 
the physics of the critical point.



Extended Data Fig. 4 | Ising critical points in different lattice models. 
Specific heat, C/T, for a number of 2D models, illustrating its universal 
behaviour around the Ising critical point. a, Ising model on the square lattice in 
a longitudinal magnetic field, h, obtained by contracting the exact D = 2 
tensor-network representation of the partition function using the 
corner-transfer-matrix method with a boundary bond dimension χ = 24 (ref. 55). 
b, Fully frustrated bilayer model, obtained by using the stochastic series 
expansion quantum Monte Carlo approach developed in refs. 27,45 to perform 
simulations on systems of sizes up to 2 × 32 × 32 as a function of  J⟂/J∥. c, Shastry–
Sutherland model, obtained by iPEPS calculations with D = 20 as in Fig. 1c. The 
dashed lines show the positions of the local maxima of the specific heat, C( J/JD), 
which we label by their temperatures, Tmax. These two lines reach an absolute 
minimum, Tmax = Tc, where they meet at the Ising critical point, with Tmax 
increasing as the control parameter is changed away from the QPT. Thus the 
specific heat defines two characteristic lines in the phase diagram of the Ising 

critical point, instead of the single line given by the correlation length (Fig. 1d) 
and the critical isochore (Fig. 1e). This contrasting behaviour has been 
demonstrated in models where the critical pressure is temperature- 
independent57 and the issue of characteristic lines has also been discussed in 
the Mott metal–insulator phase diagram38,40. We stress that such behaviour is a 
fundamental property of the Ising model, and hence of all models sharing its 
physics. For the Shastry–Sutherland model (c), the two lines of maxima can be 
taken to provide a qualitative definition of regimes dominated by ‘dimer-like’ 
spin correlations (lower left) and by ‘plaquette-like’ correlations (lower right, 
but above the plaquette-ordered phase), accompanied by a third regime (above 
both lines) bearing no clear hallmarks of either T = 0 phase. We remark that the 
values of Tc in units of the relevant energy scale, Tc/J ≈ 2.3 (a), Tc/J ≈ 0.53 (b) and 
Tc/J ≈ 0.04 (c), vary widely among the three models. This can be traced to the 
change in slope of the ground-state energy at the transition, the compensation 
of which by entropy effects restores a derivable free energy at Tc.
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